
Technical Whitepaper

LINE Encryption Overview

v2.2, December 2025

LY Corporation

Copyright

Copyright© 2025 LY Corporation. All Rights Reserved.

This document is an intellectual property of LY Corporation; unauthorized reproduction or distri-

bution of this document, or any portion of it is prohibited by law.

This document is provided for informational purposes only. LY Corporation has endeavored to

verify the completeness and accuracy of information contained in this document, but it does not

take the responsibility for possible errors or omissions in this document. Therefore, the respon-

sibility for the usage of this document or the results of the usage falls entirely upon the user, and

LY Corporation does not make any explicit or implicit guarantee regarding this.

Software products or merchandises mentioned in this document, including relevant URL informa-

tion, conform to the copyright laws of their respective owners. The user is solely responsible for

any results occurred by not complying with applicable laws.

LY Corporation may modify the details of this document without prior notice.

Revision history

Version Date Notes

2.2 2025-12-16 Update for Media E2EE

2.1 2021-11-29 Add updates

2.0 2019-10-28 Update for Letter Sealing v2

1.0 2016-09-29 Initial Publication

Contents

Introduction 1

Account Registration 1

Client-to-Server Transport Encryption 1

Letter Sealing Overview 2

1:1 Message Encryption 2

Key Generation and Registration 2

Client-to-Client Key Exchange 3

1:1 Message Encryption with Letter Sealing v1 3

Message sender 3

Message recipient 4

1:1 Message Encryption with Letter Sealing v2 5

Message sender 5

Message recipient 6

Group Message Encryption 6

Key Generation and Registration 6

Group Message Encryption with Letter Sealing v1 7

Group Message Encryption with Letter Sealing v2 7

1:1 VoIP Encryption 8

Media Encryption 9

Key Generation and Key Exchange 9

Image, Audio and File Encryption 10

Video Encryption 10

2

Conclusion 11

References 12

LINE Encryption Overview v2.2

Introduction

Letter Sealing is the common name of all end-to-end encrypted (E2EE) protocols integrated in

LINE’s messaging and VoIP services. This whitepaper offers in-depth details to Letter Sealing,

encryption protocols and algorithms used in LINE’s messaging and VoIP platform.

The scope of this document extends to LINE clients for Android and iOS. Clients targeting other

platforms may have different implementation. The protocols in this document are integrated in

LINE v6.7 and later versions.

Letter Sealing v2 has been integrated in LINE from v8.15 for iOS mobile clients, v8.17 for Android

mobile clients, and v2.6 for LINE Lite clients.

Targeting security engineers and developers, this whitepaper assumes that readers have a strong

understanding of encryption technology.

Account Registration

Signing up for a LINE account requires users to provide a valid phone numbera and register an

account password. Users can add their email address after registration. The email address and

password registered are used in account migrationb, logging in to LINE Desktop clients and for

accessing LINE’s web-based services.

If the user chooses to register an email address, LINE requests the user to verify the ownership

of the email address by sending a randomly generated 4-digit verification code to the specified

email address. The user then is required to enter this code into the LINE client or alternatively,

click the verification link provided with the code, on their mobile device. If and only if verification

is successful, the user account is enabled to use LINE authentication (namely, LINE Login) via email

address and password.

Client-to-Server Transport Encryption

LINE mobile clients no longer use SPDY 2.0 as the main transport protocol, as SPDY 2.0 is depre-

cated. So is the earlier transport layer encryption implemented in LINE. The new main protocol is

HTTP21.

LINE is in the process of migrating to TLS 1.2 and TLS 1.32. See the transparency report3 for the

migration status.

aCreating a new LINE account with a Facebook account is obsolete from April 2020.
bYou can transfer LINE accounts among devices. For more information, see https://guide.line.me/en/migration/

1

https://guide.line.me/en/migration/

LINE Encryption Overview v2.2

Letter Sealing Overview

Letter Sealing implies all end-to-end encrypted (E2EE) protocols integrated in LINE’s messaging

and VoIP services. Letter Sealing is applied to text messages, location messages, and 1:1 audio &

video calls. The scope of application is subject to change. For up-to-date information on scope,

see the Transparency Report3 and the LINE Encryption Report4.

LINE encrypts messages locally on a client device before sending messages to LINE’s messaging

server. Such encrypted messages can only be decrypted by the intended recipient. Letter Sealing

is applied only to message payloads; message metadata such as sender ID and recipient ID is not

encrypted.

Although the first version of Letter Sealing encountered message data integrity issues5, Letter

Sealing v2 guarantees stronger protection over messages, with all the issues resolved. Although

not encrypted, the new version protects the integrity of message metadata.

Letter Sealing v2 is applied by default on 1:1 and group messages if the sending LINE client sup-

ports v2. If the receiving client does not support Letter Sealing v2, the sending client downgrades

the protocol to Letter Sealing v1 and resends the message.

The main cryptographic algorithms used in Letter Sealing for messaging, supported data and

metadata protection levels are as the following.

Version 1 Version 2

Key exchange algorithm ECDH over Curve255196

Message encryption algorithm AES256-CBC AES256-GCM7

Message hash function SHA-256 N/A

Data authentication AES-ECB with SHA-256 MAC AES256-GCM

Message data Encryption and integrity

Message metadata Not protected Integrity

1:1 Message Encryption

To send encrypted messages, LINE clients go through a process of generating, registering, and

exchanging keys and lastly encrypting messages. All units of this process are similar between the

two versions of Letter Sealing. The difference lies in message encryption protocols.

Key Generation and Registration

Sending encrypted messages requires a Letter Sealing ECDH key pair. LINE clients generate a key

pair if there is none for the LINE user on the device and save the pair securely in the application’s

private storage.

2

LINE Encryption Overview v2.2

After generating a key pair, the LINE client registers the public key on a LINE’s messaging server.

The server then associates the key with the authenticated LINE user and returns a unique key ID

to the client. This unique key ID is bound to the LINE user and represents the latest version of the

user’s public key.

A new key is generated and registered each time the LINE application is reinstalled or when the

user migrates their account to a new device.

Client-to-Client Key Exchange

LINE clients participating in a chat must share a common cryptographic secret before exchanging

encrypted messages. The process for obtaining a shared secret is as follows.

1. The sending client retrieves the current public key of the recipient.

2. The sending client passes its own private key and the recipient’s public key to the ECDH al-

gorithm to generate a shared secret.

3. The recipient generates the same shared secret using their own private key and the sender’s

public key.

The ECDH algorithm used in the process is as follows.

SharedSecret

= ECDHcurve25519(keyuser1
private, keyuser2

public)

= ECDHcurve25519(keyuser2
private, keyuser1

public)

The whole process is transparent to users. There is no trusted third party who verifies public

keys. Nevertheless, there is a way for users to verify the recipient. LINE enables users to view the

fingerprint of their and the recipient’s public key and thus verify the key out-of-banda.

1:1 Message Encryption with Letter Sealing v1

LINE encrypts each message with a unique encryption key and IV (Initialization Vector).

Message sender

The sending LINE client encrypts the message in the following steps. The sending client:

1. Derives an encryption key and IV from the shared secret calculated and a randomly gener-

ated 8-byte salt:

ahttps://help.line.me/line/?contentId=20004441

3

LINE Encryption Overview v2.2

salt = randomsecure(8)

Keyencrypt = SHA256(SharedSecret || salt || “Key”)

IVpre = SHA256(SharedSecret || salt || “IV”)

IVencrypt = IVpre[0 : 15] ⊕ IVpre[16 : 31]

2. Encrypts the message payload (M) with the encryption key (Keyencrypt) and IV (IVencrypt) ob-

tained from the previous step, using AES-256-CBC:

C = AES − CBC(Keyencrypt, IVencrypt, M)

3. Calculates a message authentication code (MAC) of the ciphertext (C):

MACplain = SHA256(C)

MACenc = AES − ECB(Keyencrypt, MACplain[0 : 15] ⊕ MACplain[16 : 31])

4. Sends the message to the recipient consisting of the following fields.

version content type salt C MAC sender key ID recipient key ID

Message fields, other than the ones generated in the process are as follows.

• Version, Content type: Serve to identify the Letter Sealing version used to encrypt the mes-

sage

• Sender key ID: Used by the message recipient to retrieve the public key used in encrypting

the message

• Recipient key ID: Helps verifying that the message can be decrypted using the current local

private key

Messages targeting a previous key pair (such as one used before migrating to the current device)

may not be decrypted. To facilitate device migration, LINE clients automatically request the LINE

messaging server to resend recent messages targeting a previous key pair.

Message recipient

The LINE client receiving an encrypted message decrypts the message in the following steps. The

receiving client:

1. Determines whether they can decrypt the message.

2. (If the client can decrypt the message) Derives the shared secret, symmetric encryption key,

and IV.

3. Calculates themessage authentication code (MAC) of the ciphertext received and compares

the value with the MAC contained in the message. If the codes match, the client decrypts

and displays the message to the LINE user. If not, the client does not display the message.

4

LINE Encryption Overview v2.2

1:1 Message Encryption with Letter Sealing v2

In Letter Sealing v2, LINE encrypts each message with a unique encryption key and a random

nonce.

Message sender

The sending LINE client encrypts the message in the following steps. The sending client:

1. Derives an encryption key using two values; the shared secret calculated in the

client-to-client key exchange step and a 16-byte randomly generated salt.

salt = randomsecure(16)

Keyencrypt = SHA256(SharedSecret || salt || “Key”)

2. Calculates nonce by concatenating an 8-byte per-chat counter with a 4-byte randomly gen-

erated value.

nonce[12] = per_chatcounter[8] || randomsecure(4)

3. Encrypts the message payload (M) with AES256-GCM, using the key(Keyencrypt) and nonce

calculated. GCM being an AEAD (Authenticated Encryption with Associated Data) scheme,

ensures data confidentiality and integrity. Letter Sealing v2 adds message metadata as as-

sociated data for integrity enforcement. The metadata is as follows.

AAD =

recipientID || senderID || senderkeyID || recipientkeyID || version || contenttype

The output, GCM tag, is 16-byte long.

(C, tag) = AES − GCM(Keyencrypt, nonce, M, AAD)

4. Sends the message to the recipient consisting of the following fields.

version content type salt C||tag nonce sender key ID recipient key ID

The fields version, content type, sender key ID, and recipient key ID are similar to those included

in messages with Letter Sealing v1. The difference lies in:

• Ciphertext and GCM tag sent concatenated as one chunk of data

• Nonce added as a separate chunk to the message

5

LINE Encryption Overview v2.2

Message recipient

The LINE client receiving an encrypted message decrypts the message in the following steps. The

receiving client:

1. Derives an encryption key using the shared secret and salt from the message.

2. Decrypts the ciphertext with AES-GCM.

3. Provides messages metadata as AAD (Additional Authenticated Data).

4. If the GCM tag received matches the tag computed during the decryption, the recipient dis-

plays the message to the LINE user. If not, the client does not display the message.

Group Message Encryption

Similar to 1:1 message encryption, the difference between the two versions of Letter Sealing for

group message encryption is only in the message encryption process.

Key Generation and Registration

To implement encrypted group chats, LINE generates a shared group key and securely distributes

the key to all group members. A shared group key is typically generated by the first member

wishing to send a message to the group. To generate and distribute a shared group key, a LINE

client:

1. Generates a new ECDH key pair. The private key of the pair serves as the group’s shared key.

2. Retrieves the public keys of all group members.

3. Derives a set of symmetric encryption keys. A symmetric encryption key is calculated with

the private key of the current user and the public key of a group member; this calcula-

tion is performed for all public keys retrieved from the previous step. The key deriva-

tion process is the same as 1:1 chats, as described in Key Generation and Registration and

Client-to-Client Key Exchange sections.

4. Encrypts the shared group key with a symmetric encryption key derived from the previous

step. This encryption is performed with all symmetric encryption keys, one by one.

5. Sends the encrypted shared group keys to LINE’s messaging server.

LINE’s messaging server associates the encrypted group keys with the group and returns the ID

of the latest shared group key. When members join or leave the group chat, a new shared group

key is generated and associated with the group.

6

LINE Encryption Overview v2.2

Group Message Encryption with Letter Sealing v1

For LINE group chat members to send a message to the group using Letter Sealing v1, their LINE

client first retrieves the encrypted shared group key (Sharedkeygroup), decrypts the key, and caches

the key locally.

To send amessage, a groupmember derives an encryption key (Keyencrypt) and IV (IVencrypt), using

the shared group key and their own public key as input. The process is similar to the one used for

1:1 chats with Letter Sealing v1 as specified below.

SharedSecretgroup = ECDHcurve25519(Sharedkeygroup, keysender
public)

salt = randomsecure(8)

Keyencrypt = SHA256(SharedSecretgroup || salt || “Key”)

IVpre = SHA256(SharedSecretgroup || salt || “IV”)

IVencrypt = IVpre[0 : 15] ⊕ IVpre[16 : 31]

After obtaining required elements, LINE encrypts and formats message data for group messages

as described for 1:1 messages. The only difference for group messages is that the fields recipient

ID and the recipient key ID are replaced with the group chat ID and the ID of the shared group

key, respectively.

Group Message Encryption with Letter Sealing v2

Group message encryption with v2 computes the Sharedkeygroup as described in the

Key Generation and Registration section. For LINE group chat members to send a group mes-

sage with Letter Sealing v2, their LINE client first retrieves the encrypted shared group key

(Sharedkeygroup), decrypts the key, and caches the key locally.

To send amessage, a groupmember derives an encryption key (Keyencrypt) using the shared group

key and their own public key. The calculation is similar to that of 1:1 chats with v2, as follows.

SharedSecretgroup = ECDHcurve25519(Sharedkeygroup, keysender
public)

salt = randomsecure(16)

Keyencrypt = SHA256(SharedSecretgroup || salt || “Key”)

nonce[12] = per_chatcounter[8] || randomsecure(4)

LINE encrypts and formats message data for groupmessages as described for 1:1 messages. The

only difference for group messages is that the field recipient key ID is replaced with the ID of the

shared group key.

7

LINE Encryption Overview v2.2

1:1 VoIP Encryption

Letter Sealing is applicable not only on messages but on VoIP calls as well. Keys for encrypting

VoIP traffic are obtained using the ECDH key exchange algorithm. The curve used in LINE’s VoIP

encryption protocol is secp256r18. LINE uses AES for symmetric encryption andHKDF9 for deriving

symmetric keys.

To start a call:

1. The caller generates a new ephemeral key pair and sends the pair to the callee as a part of

the call request.

2. After the callee receives the call request, the callee generates own ephemeral key pair and

sends the pair back to the caller.

User identity is guaranteed by LINE’s signaling server which signs call set up messages.

SharedSecret

= ECDHsecp256r1(EphemeralKeycaller
private, EphemeralKeycallee

public)

= ECDHsecp256r1(EphemeralKeycaller
public, EphemeralKeycallee

private)

After both parties exchange keys, each party generates a master secret and derive a VoIP session

key and salt as follows:

saltrx = randomsecure(16)

salttx = randomsecure(16)

MasterSecretrx =

HMACSHA256(HKDFSHA256(SharedSecret, EphemeralKeycaller
public, EphemeralKeycallee

public, saltrx))

MasterSecrettx =

HMACSHA256(HKDFSHA256(SharedSecret, EphemeralKeycallee
public, EphemeralKeycaller

public, salttx))

MasterSecretrx|tx and saltrx|tx serve as themaster key andmaster salt used to initialize SRTP10 and

used to generate audio|video|data_srtp_keyrx|tx, respectively. Both audio and video media streams

are encrypted using the AES_CM_128_HMAC_SHA1_80 crypto-suite11.

8

LINE Encryption Overview v2.2

/ ∗ Audio SRTP Key ∗ /

audio_srtp_keyrx = HMACSHA256(“AUDIO”, MasterSecretrx)

audio_srtp_keytx = HMACSHA256(“AUDIO”, MasterSecrettx)

/ ∗ Video SRTP Key ∗ /

video_srtp_keyrx = HMACSHA256(“VIDEO”, MasterSecretrx)

video_srtp_keytx = HMACSHA256(“VIDEO”, MasterSecrettx)

/ ∗ DATA SRTP Key ∗ /

data_srtp_keyrx = HMACSHA256(“DATA”, MasterSecretrx)

data_srtp_keytx = HMACSHA256(“DATA”, MasterSecrettx)

Media Encryption

Letter Sealing is applied on media file messages (image, audio, video and file attachment) since

LINE version 13.3.0 on Android and version 13.15.0 on iOS. Each media file is encrypted using a

unique random symmetric key, which is end-to-end encrypted and securely shared with recipients

using Letter Sealing v2 message encryption.

Key Generation and Key Exchange

The ephemeral symmetric key is generated by the sender and used to encrypt or decrypt the

media files. The client follows these steps:

1. A random key material of 32 bytes is generated from a secure random source.

KM = randomsecure(32)

2. If the media file is sent in a 1:1 chat, the key material is encrypted and shared with the recip-

ient using the method described in 1:1 Message Encryption.

If the media file is sent in a group chat, the key material is encrypted and shared with the

recipients using the method described in Group Message Encryption.

3. The client derives the key material using HKDF-SHA256 to obtain a 32-byte encryption key,

a 32-byte MAC key, and a 12-byte IV. These derived keys are used by the sender and the

receivers to encrypt, decrypt and verify the integrity of the media files.

Keyencrypt[32], Keymac[32], IV [12] = HKDFSHA256(KM, “FileEncryption”, 76)

9

LINE Encryption Overview v2.2

Image, Audio and File Encryption

Image, audio and file attachment media files are encrypted using AES-256-CTR. The integrity of

the files follows a Encrypt-Then-Mac approach, using HMAC-SHA256.

1. The media file payload P is encrypted with the encryption key Keyencrypt using AES-256-CTR.

The IV is extended with four 0x00 bytes, to form a 16-byte array.

C = AES − CTR(Keyencrypt, IV ||0x00||0x00||0x00||0x00, P)

2. The MAC of the encrypted file C is calculated using HMAC-SHA256 and the MAC key Keymac.

MAC = HMACSHA256(Keymac, C)

3. The sender sends the ciphertext C and the MAC MAC to the server.

4. The receiver retrieves the ciphertext and the MAC from the server, then performs the inverse

steps: deriving the symmetric keys from the key material, verifying the integrity of the en-

crypted file, and finally decrypting the file.

Video Encryption

The LINE client needs to be able to start playing videos before the entire file has been downloaded.

For this reason, the encryption of videomedia files differs slightly from othermedia types, to allow

verifying the integrity of the ciphertext chunks while it is being decrypted.

1. The encryption of the video is done similarly to other media types, by encrypting the file

payload P with the encryption key Keyencrypt using AES-256-CTR. The IV is extended with

four 0x00 bytes, to form a 16-byte array.

C = AES − CTR(Keyencrypt, IV ||0x00||0x00||0x00||0x00, P)

2. The encrypted file C is split in N chunks C0, C1, . . . , CN of 128 KB, which are all hashed inde-

pendently using SHA256.

∀i ∈ 0..N, Hi = SHA256(Ci)

3. A MAC is computed on the concatenation of the N chunk hashes Hi, using HMAC-SHA256

and the MAC key Keymac.

MAC = HMACSHA256(Keymac, H0||H1|| . . . ||HN)

4. The sender sends the ciphertext C, the MAC MAC, and the list of all chunk hashes Hi to the

server.

10

LINE Encryption Overview v2.2

The decryption process by the receiver occurs in a different order than the encryption process

from the sender.

1. The receiver downloads the MAC MAC and the list of all chunk hashes H0, H1, . . . , HN from

the server.

2. A MAC MAC ′ is computed on the concatenation of the N chunk hashes Hi, using HMAC-

SHA256 and the MAC key Keymac.

MAC ′ = HMACSHA256(Keymac, H0||H1|| . . . ||HN)

The computedMAC ′ is compared to theMAC received from the server to verify the integrity

of the list of chunk hashes.

3. The receiver starts downloading the ciphertext C of the video media file. For each 128 KB

chunk Ci, the client computes its hash H ′
i, and compares it to the corresponding hash Hi

received from the server.

H ′
i = SHA256(Ci)

If the hash H ′
i matches the hash Hi, the chunk can be decrypted. If the hash H ′

i does not

match, the client aborts the decryption process and stops playing the video.

4. The chunk Ci is decrypted with the key Keyencrypt using AES-256-CTR. The 12-byte IV is ex-

tended with the chunk offset in the file, divided by the size of an AES block, to form a 16-byte

array. Since chunks are 128 KB, this corresponds to multiplying the chunk index i by 8192.

Pi = AES − CTR(Keyencrypt, IV ||to_bytes(i ∗ 8192), Ci)

The decrypted chunk Pi is cached for playback by the video player, and the decryption can

continue with the next chunk Ci+1.

Conclusion

Messaging traffic between LINE clients and LINE servers is protected with forward-secure encryp-

tion, and both text messages and media streams in VoIP calls are end-to-end encrypted.

LINE’s Letter Sealing protocol ensures that no third parties or LY Corporation can decrypt private

calls and messages between users; encrypted communication can only be decrypted by the in-

tended recipient.

11

References

[1] M. Belshe, R. Peon, and M. Thomson. Hypertext transfer protocol version 2 (http/2). RFC

7540, RFC Editor, May 2015. http://www.rfc-editor.org/rfc/rfc7540.txt.

[2] E. Rescorla. The transport layer security (tls) protocol version 1.3. RFC 8446, RFC Editor, August

2018.

[3] LY Corporation. Transparency report.

https://www.lycorp.co.jp/en/privacy-security/privacy/transparency/.

[4] LY Corporation. Line encryption report.

https://www.lycorp.co.jp/en/privacy-security/security/transparency/encryption-report/2024/.

[5] Takanori Isobe and Kazuhiko Minematsu. Breaking message integrity of an end-to-end en-

cryption scheme of line. In European Symposium on Research in Computer Security, pages 249–

268. Springer, 2018.

[6] Daniel J Bernstein. Curve25519: new diffie-hellman speed records. In International Workshop

on Public Key Cryptography, pages 207–228. Springer, 2006.

[7] David McGrew and John Viega. The galois/counter mode of operation (gcm). submission to

NIST Modes of Operation Process, 20:0278–0070, 2004.

[8] Daniel RL Brown. Sec 2: Recommended elliptic curve domain parameters. Standars for Efficient

Cryptography, 2010.

[9] H. Krawczyk and P. Eronen. Hmac-based extract-and-expand key derivation function (hkdf).

RFC 5869, RFC Editor, May 2010. http://www.rfc-editor.org/rfc/rfc5869.txt.

[10] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman. The se-

cure real-time transport protocol (srtp). RFC 3711, RFC Editor, March 2004.

http://www.rfc-editor.org/rfc/rfc3711.txt.

[11] F. Andreasen, M. Baugher, and D. Wing. Session description protocol (sdp)

security descriptions for media streams. RFC 4568, RFC Editor, July 2006.

http://www.rfc-editor.org/rfc/rfc4568.txt.

http://www.rfc-editor.org/rfc/rfc7540.txt
https://www.lycorp.co.jp/en/privacy-security/privacy/transparency/
https://www.lycorp.co.jp/en/privacy-security/security/transparency/encryption-report/2024/
http://www.rfc-editor.org/rfc/rfc5869.txt
http://www.rfc-editor.org/rfc/rfc3711.txt
http://www.rfc-editor.org/rfc/rfc4568.txt

	Introduction
	Account Registration
	Client-to-Server Transport Encryption
	Letter Sealing Overview
	1:1 Message Encryption
	Key Generation and Registration
	Client-to-Client Key Exchange
	1:1 Message Encryption with Letter Sealing v1
	Message sender
	Message recipient

	1:1 Message Encryption with Letter Sealing v2
	Message sender
	Message recipient

	Group Message Encryption
	Key Generation and Registration
	Group Message Encryption with Letter Sealing v1
	Group Message Encryption with Letter Sealing v2

	1:1 VoIP Encryption
	Media Encryption
	Key Generation and Key Exchange
	Image, Audio and File Encryption
	Video Encryption

	Conclusion
	References

